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ABSTRACT

Two age-size structured, individual-based, partial differential equation population
models are coupled to form a predater-prey model, which is parametrized for a
Daphnig-trout (Daphnie magna-Oncorhynchus mykiss) community. Lethal effects
chemical uptake models for fish and Daphnia are coupled to the commaunity, and
Daphnia population extinction thresholds due to predation are computed as a func-
tion of chemical concentration in the water. Predation of fish on Daphnia is size
dependent, and Daphnie population extinction thresholds are also computed as a
function of size-dependent predation.

1. Introduction

1.1. The Problem

Interactions between species are mechanistically complex because they depend
upon numerous environmental, physiological, behavioral, and trophic factors. This
article focuses on two possible countrolling agents in the predation process, phys-
iclogical processes and exogenous chemical stressors. Predation, a fundamental
structuring process in ecological systems, is often influenced by size of both the
predator and its prey. This attribute, along with the ecotoxicological aspects of our
study, require an individual-based perspective.

Dynamics of structured population models are difficult to ascertain because of
the spectrum of possible behaviors. Qur efforts focus on persistence and extinction
phenomena obtained from consideration of size-governed feeding and chemical tox-
icity in an age-size structured predator-prey model. The results are obtained via



simulations of the community model.

1.2 The Model

The predator-prey model is composed of two age-size structured population
models, one for each of the predator and prey populations, and the trophic interac-
tions between them. The population models are partial differential equation models
of McKendrick-von Foerster type and are individual-based in that the growth rate
of an individual organism appears in the population equation.

The individual growth rate models are mechanistic representations of individual
energy budgets, and rely on parameters estimated from empirical data collected
at the individual level. Individual biology is important for risk assessment because
environmental influences such as toxic stress affect populations by affecting the pop-
ulation’s individual members. Lipophilic chemicals, for example, affect individual
organisms according to their fat content’.

The predator model is constructed and parametrized for the rainbow trout,
Oncorhynchus my!.,iss and the prey model is constructed and parametrized for
Daphnia magna®. The two population models are coupled through the feeding of the
fish on the Daphnia and the consequent mortality imposed on the prey population.
Predator resource density is computed from prey density, and one component of prey
mortality is due to predation. Once the predation interaction has been specified, a
given predator feeds according to the uptake term(s) in its individual growth model,
and the resulting mortality on the prey population is computed?.

Assume (p, q} is the unique solution of the age-size structured model
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where 7 = (mq,m,---,my) and # = {(ny,ny, -, ng) are vectors of j physiological
variables for the prey and k& physiological variables for the predator. p(t,a,7) is
the age-mass (but not volumetric) density at time ¢, age a, and mass vector % of



the prey in numbers per unit age per unit mass, and ¢{¢, a, %) is the density at time
t, age a, and mass vector n of the predators. gi(a,m) and h;(a, ) are the growth
rates of the +** mass variables m; and n;, respectively, in an individual prey and
predator. G(a, 7, 7o) and B(a, @, i) are the birth rates of the prey and predators,
respectively; p(t, a,m, p(t,, ), q(t,-,-)) and v(t, a,®, q(t, -, -)) are the mortality rates
for the prey and predators, respectively; and p and § are the initial distributions of
prey and predators.

Variation among individuals can be introduced by modelling an arbitrary num-
ber of ecotypes in the populations. Each ecotype is modelled with a partial differ-
ential equation and is distinguished by its distinct individual growth rate.

1.8 Relative Foraging Volumes

Because the predator-prey model is solved numerically, it is difficult to sumulate
the large number of Daphnia required to provide resources for a reasonable number
of fish; therefore, only a fraction of the Daphnia are simulated and the model is
appropriately scaled. The fish population is associated with a volume parameter
Vr representing predator foraging range. The simulated representative daphnids are
associated with another (possibly the same, but probably smaller) volume parameter
Vp. The Daphnia population is assumed to be distributed uniformly over volume
Vi, but the simulation only tracks a representative fraction of the whole Daphnia
population. If Vp = Vg, then the simulation follows the entire Daphnia population.
If not, interactions between the predator and prey communities must be modified
by the scaling factor Vp/Vp.

1.4 Predator Feeding :

An individual fish is assumed to only eat daphnids whose length Ly falls within
a certain prey size window that depends linearly on the length of the fish®. In
particular, the fish can consume daphnids whose length satisfies the inequality
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where knin and ke, are parameters. Smaller and larger daphnids either are not

pursued by the fish or are transported through the gills. A daphnid of length Lp

therefore can (only} be consumed by a fish whose length satisfies the inequality
0.1 -kl Lp<Lp<0l-k5. -Lp. (3)

For both species, length is computed allometrically from structural mass, one of
the mass variables computed in both the fish and Daphnia models. Let Q%) denote
the range of masses of Daphnia which a fish of mass 7 can consume, and let I'(7)
denote the range of masses of fish which can consume a daphnid of mass 7.

The fish respond to the volumetric density of the prey, and are assumed to
divide the resource among themselves by an intraspecific competitive mechanism,
with larger fish receiving larger shares. A fish of mass np responds to the following
resource density of Daphnie of mass i
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having mass vector m. A fish of mass rip thus responds to a total resource density
of
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2. Results: Extinction Thresholds

2.1. Definition

In order to analyze some of the effects of size-dependent predation, we now
assume 1) the Daphnia population has a constantly abundant resource density, and
2) all mortality is due to predation, starvation, or old age.
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Fig. 1. Extinction threshold In Vz~' as a function of In V™! for 100-day runs.



Because of these hypotheses, extinction can occur in only two ways. The first
extinction scenario is also found in aggregated models: the fish eat all the avail-
able daphnids, the Daphnia population goes to extinction, and then the fish starve.
The second extinction scenario is completely due to size structure in the model,
specifically size-dependent predation: the fish do not find sufficient Daphnia of the
appropriate size to eat, and thus starve while the Daphnia population survives®.
This paper concerns the first extinction scenario, which corresponds to the extine-
tion of the Daphnia and necessarily leads to the extinction of the fish.

Let ¢ and ¢ be nominal initial population distributions of prey and predator,
respectively, in units of numbers per unit age per unit mass. While keeping these
distributions the same, we vary the initial population densities by varying the vol-
umes Vp and Vg, and calculate the extinction threshold. Given an initial Daphnia
population density distribution §/Vp, the extinction threshold is the infimum of
the V@' such that an initial fish density distribution of §/V drives the Daphnia
population to extinction within a prescribed number of days.
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Fig. 2. Extinction threshold log Vp~! as a function of chemical concentration Ci in the water and
log ¥p~' for 100-day runs. The planes Cw = 1:62 x 10™° and Cw = 1:78 x 1075 form vertical
asymptotes for the surface; and for Cw ; 1.78 x 1073, Vet =0 (see Figure § for a cross section).

Figure 1 shows the extinction threshold as a function of Vp™! for 100-day runs
with nominal initial population distributions. The initial Daphnia distribution con-



tains 26 ecotypes of relatively fast growers and reproducers, and 1 ecotype of slow
growers which reproduce only once before dying of old age at 50 days. The lower
part of the curve, which has small slope, corresponds to the extinction of the slow-
growing ecotype, and the upper part, which has a larger slope, corresponds to
extinction of the faster-growing ecotypes.

Vp and VF must be interpreted as volumes, and not just scaling factors on the
initial distributions, because they appear as parameters in their own right in the
resource partitioning for fish, where fish numbers respond to Daphnia density.

2.2 Extinction threshold as ¢ function of tozicant

We now allow toxicant-induced miortality in both the predator and prey popu-
lations by engaging the lethal effects models for fish and Daphnial+>.

Figure 2 shows the 100-day extinction threshold for the predator-prey model
(with the nominal initial population distributions) as a function of Cy (concentra-
tion of chemical in the water) and Vp™'. At 2600 days, both populations were given
a 3 day exposure to a chemical with octanol-water coefficient 10%. kpae and kpmin
had values of 0.2 and 0.007, respectively.
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Fig. 3. Cross section of Figure 2 with initial Daphnia density held constant at Vp~! = 10~4,

Figure 3 shows a typical cross section of Figure 2 with initial Daphnia density
held constant at V™! = 1074, When 1.62 x 107° < Cw < 1.78 x 1073, all the



young fish die from the toxicant and the remaining fish are too large to eat any of
the juvenile daphnids. Thus, each daphnid is able to reproduce at least once, and
hence the Daephnia population grows no matter how high the fish density. When
Cw > 1.78 x 1073, the toxicant kills all the Daphnia.

2.8 Eztinction threshold as a function of size-dependent predation

Figure 4 shows the extinction threshold for constant V5?' as a function of kmas
when Ky, is set at 0. At low values of kpqz, none of the daphnids are small enough to
fall in the prey windows of any of the fish, and so no density of fish is large enough
to control the Daphnia population. At intermediate values of ks, all juvenile
daphnids and some adult daphnids are consumed by the fish, and so the extinction
threshold is finite. At large values of by, all sizes of Daphnia are consumed by all
fish,.and so the extinection threshold becomes constant with increasing kmas-
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Pig. 4. Extinction ihreshold as a function of ey when ki, = 0.

Figure 5 shows the extinction threshold for constant V5" as a function of kmi
when k.. 18 set at co. At low values of ki, all sizes of Daphnia are consumed by
all fish, so the threshold corresponds to the threshold at high k..., in Figure 4. At
intermediate values of k., adult and some juvenile daphnids are consumed. When
kmin 1s sufficiently high, no juvenile daphnids are consumed. At this point, no finite
fish density can control the Daphnia population since each daphnid is allowed to



reproduce at least once.

3. Summary

When mortality is restricted to predation, starvation, and old age, causes of
extinction in the structured community model are restricted to over-exploitation of
prey and starvation. When the prey are assumed to have a constantly abundant
resource, extinctions can only result from extinction of prey due to predation, or
extinction of predators due to lack of sufficient prey of appropriate consumption
size. The extinction thresholds obtained are of the former type, and are functions
of the size-dependent predation mechanism.

if lethal effects of chemicals are introduced, the densities and size distributions of
the populations are perturbed, causing changes in the extinction thresholds. In this
case, extinction can also result from a lethal chemical dose to one of the populations.
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Fig. 5. Extinction threshold as a function of ki when ke = c0.
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